In order to fulfill the basic functions of our service, the user hereby agrees to allow Xiaomi to collect, process and use personal information which shall include but not be limited to written threads, pictures, comments, replies in the Mi Community, and relevant data types listed in Xiaomi's Private Policy. By selecting "Agree", you agree to Xiaomi's Private Policy and Content Policy .


[Off-topic] Engineers' reactor converts gas directly into acetic acid

2021-01-12 20:35:51
92 1

Hi MIUI Users,

A sweet new process is making sour more practical.
Rice University engineers are turning carbon monoxide directly into acetic acid—the widely used chemical agent that gives vinegar its tang—with a continuous catalytic reactor that can use renewable electricity efficiently to turn out a highly purified product.

The electrochemical process by the labs of chemical and biomolecular engineers Haotian Wang and Thomas Senftle of Rice's Brown School of Engineering resolves issues with previous attempts to reduce carbon monoxide (CO) into acetic acid.Those processes required additional steps to purify the product.
The environmentally friendly reactor uses nanoscale cubes of copper as the primary catalyst along with a unique solid-state electrolyte.

In 150 hours of continuous lab operation, the device produced a solution that was up to 2% acetic acid in water. The acid component was up to 98% pure, far better than that produced through earlier attempts to catalyze CO into liquid fuel.
Along with vinegar and other foods, acetic acid is used as an antiseptic in medical applications; as a solvent for ink, paint and coatings; and in the productionof vinyl acetate, a precursor to common white glue.

The Rice process builds upon the Wang lab's reactor to produce formic acid from carbon dioxide (CO2). That research established an important foundation for Wang, recently named a Packard Fellow, to win a $2 million National Science Foundation (NSF) grant to continue exploring the conversion of greenhouse gases into liquid fuels.

We're upgrading the product from a one-carbonchemical, the formic acid, to two-carbon, which is more challenging,
  Wang said.
People traditionally produce acetic acid in liquid electrolytes, but they still have the issue of low performance as well as separating the product from the electrolyte.
Acetic acid is typically not synthesized, of course, from CO or CO2,
Senftle added.
That's the keyhere: We're taking waste gases we want to mitigate and turning them into a useful product.
It took a careful coupling between the copper catalystand solid electrolyte, the latter carried over from the formic acid reactor.

Sometimes copper will produce chemicals along two different pathways,
Wang said.
It can reduce CO into acetic acid andalcohols. We engineered copper cubes dominated by one facet that can help thiscarbon-carbon coupling, with edges that direct the carbon-carbon coupling towards acetic acid insteadof other products.
Computational models by Senftle and his team helpedrefine the cubes' form factor.
We were able to show there are types ofedge on the cube, basically more corrugated surfaces, that facilitate breakingcertain C-O bonds that steer the products one way or the other,
he said.
Having more edge sites favors breaking the right bonds at the righttime.
Senftle said the project was a great demonstration of how theory and experiment should mesh.
It's a nice example of engineering on many levels, from integration of the components in a reactor all the way down to the mechanism at the atomistic level,
It fits with the themes of molecular nanotechnology, showing how we can scale it up to real-world devices.
he said.
The next step in development of a scalable system is to improve upon the system's stability and further reduce the amount of energythe process requires, Wang said.
Rice graduate students Peng Zhu and Chun-Yen Liu and Chuan Xia, the J. Evans Attwell-Welch Postdoctoral Fellow, are co-lead authors of the paper.

2021-01-12 20:35:51
Favorites RateRate
Nice information, thanks for sharing
2021-01-14 17:58:04
please sign in to reply.
Sign In Sign Up


Resource Team

  • Followers


  • Threads


  • Replies


  • Points


3 Days Check-In
7 Days Check-In
21 Days Check-In
40 Days Check-In
70 Days Check-In
100 Days Check-In
Newbie Member
Throw Back with Mi 2018
400K Mi Fans
300K Mi Fans

Read moreGet new

Mi Comm APP

Stay updated on Mi Products and MIUI

Copyright©2010-2020, All Rights Reserved
Quick Reply To Top Return to the list